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Abstract. This paper presents the design and implementation of a col-
laborative multi-robot system based on ROS. The goal is to manipu-
late objects with multiple cobots simultaneously by following commands
given by a user via gestures. Two methods have been designed, developed,
implemented and experimentally evaluated: The first one is based on the
ROS package called MoveIt! and focuses mainly on configuration to allow
simultaneous control of different cobots. The second method involves the
development of a third-party motion planner that sends commands di-
rectly to the controllers responsible for executing the cobots’ movements.
The Leap Motion, a device that can be used for gesture recognition, is
also integrated into the system to enable user interaction in object ma-
nipulation. The system has been tested in simulation using Gazebo and
evaluated in a real UR10 robot. The main contribution of the proposed
architecture is that it solves the problem of controlling multiple robots
simultaneously in ROS. In particular, our approach allows simultaneous
execution of tasks with different types of controllers, brands and models,
as well as direct control of the robots by using the Leap Motion device.

Keywords: Collaborative Robots, Multi-robot, ROS, Robot Operating
System, MoveIt!, Leap Motion

1 Introduction

The use of collaborative robots (cobots) is already widespread in manufacturing
lines. They allow to combine the strengths of humans and robots to complete a
given task with effectiveness while reducing risks to human workers [4] [7] [13].
With the proliferation of cobots, unskilled workers may have great difficulty in-
teracting with or controlling the robotic system properly. One solution to this
problem lies in the development of human-robot communication that does not
require prior technical knowledge of the robotic systems [13], as industrial robots
are not designed to interact with humans and are typically programmed to per-
form predetermined repetitive tasks [7]. There is also growing interest in replac-
ing a single industrial robot with a team of cooperatively working robots [8] [9].

The focus of this article is on a multi-robot system integrated with cobots,
rather than a dual-arm cobot [7]. One of the difficulties is configuring the system
architecture with multiple robots. Although we use ROS as it is one of the
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most established tools in the robotics community for dealing with such systems,
there is little documentation on how to set up and configure such multi-cobot
systems, and the scarce documentation available lacks important information
and explanations. In addition, the multi-robot approach is not widely used due
to its complexity at the mechanical and system levels [7]. The cobots in this
system can cooperate and collaborate to accomplish tasks that are not feasible
with only one cobot, such as manipulating a deformable object that is too large,
too heavy, or difficult to grasp [6]. There is also the need to control a group
of cobots, even if they are from different companies, which requires the use of
different types of controllers.

Since the initial release of ROS (2007), there has not been much publicly
available documentation on how to develop a system to control multiple cobots
simultaneously in ROS. There are two main issues with the current setup of
ROS. The first one is the configuration of the controllers, because we require
them to be able to control each of the cobots simultaneously (instead of sequen-
tially) even as the number of cobots increases. The second problem is the motion
planner [2], whose task is to calculate the motion that each of the joints should
perform until each cobot reaches the desired position. In this process, preempteds
notifications are generated on the system scheduler when the tasks are performed
simultaneously by the package MoveIt!. This means that the problem of simu-
lating multiple cobots on the computer must be addressed, leading to better use
of resources and better coordination in defining the tasks. Another point worth
highlighting is the need to develop a human-robot interface that allows workers
to control the robots without prior technical knowledge, such as through voice
commands, gestures, or body movements [1] [2] [5].

We propose the alternatives named MoveIt-1×M and Custom-N×M for
building a multi-robot system with cobots based on modifying the Unified Robot
Description Format (URDF) robot model [10] and using a motion planner to
control the cobots independently. The robots can also be controlled through Leap
Motion’s human-robot interface [5] [11]. One of the solutions, called Custom-
N×M, uses our customized motion planner that computes the motion and sends
the commands directly to the controllers that are responsible for executing the
motions of each cobot. The other solution, called MoveIt-1×M, uses the ROS
package MoveIt! [3] and configures it to allow simultaneous control of different
cobots separated by namespaces [10]. We also use Leap Motion as a solution
that allows different movements to be performed based on hand motions and
gestures, each of which can be tracked by multiple cobots.

The result of the developed solutions allows different brands of cobots to
perform different tasks simultaneously with different types of controllers. For
both solutions, we perform the pick and place task for one cobot, two cobots,
and four cobots. In addition, for one and two cobots, we tested the human
interaction using the Leap Motion device, and finally we tested the system in a
real robot, the UR10 model from Universal Robots, for picking up and putting
down objects. The complexity of controlling multiple cobots is manageable, as
the concept is to replicate what is done for one cobot, making it easier to scale.
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The remainder of this article is organized as follows. Section 2 explains the
architecture of the multi-robot system, the requirements that must be met during
design and development, it provides an analysis of the possible alternatives and
the rationale for the chosen solutions, and it shows the integration of the Leap
Motion device into the system and how it works. Section 3 shows the results
obtained with both solutions on Gazebo and the real robot. Finally, section 4
concludes the paper and presents some future work. All the documentation and
code to reproduce the approach described in this paper can be found on this
website: https://github.com/Serru/MultiCobot-UR10-Gripper.

2 Design of the multi-robot system

In a conventional manufacturing process, workers typically performs repetitive
manual tasks using primarily their hands, such as assembly, object handling,
material processing, etc. The integration of collaborative robots (cobots) as a
solution to significantly improve efficiency and reduce physical strain on workers
performing tedious tasks is increasingly being used. A multi-robot system with
collaborative robots enables the completion of a wider and more difficult variety
of tasks than a single cobot solution.Our approach reduces the resources required
to integrate a new cobot, enables awareness of the other robots, and facilitates
tasks that require synchronization without the need for external devices such as
the Kinect and RGB-D sensor to sense the work environment [2]. Another goal is
to allow the human worker to interact naturally with two cobots simultaneously.

2.1 Architecture of the system

The architecture of the system is shown in Fig. 1. It must be scalable and open
source. Therefore, we have chosen ROS, which allows the integration of new
elements into the system by adding ROS nodes (locally or externally). Moreover,
it is a framework that does not depend on a specific robot platform, but allows
the integration of any robot brand, its robot models and sensors. The version
of ROS used is Kinetic Kame, which runs on Ubuntu 16.04. For robot control
and trajectory planning, we used the MoveIt! package which is mainly based
on the move group node and provides a variety of services. This node allows us
to retrieve the current values of the cobot’s joints and the position of the end-
effector, choose between different planning algorithms, and perform the planning
and execution of the planned movements. We considered other software based on
message passing but they did not offer much support for robotics, were outdated
or are proprietary.

To test the system, we see in Fig. 1 that there are three possibilities. To
test one robot, we can use Rviz (a native tool of ROS), Gazebo (a simulator
integrated in ROS) and finally directly the physical cobot. To properly test
multiple cobots, we will only use Gazebo. We integrate a device that allows



4 Miguel Burgh-Oliván et al.

Simmulated 
Cobot/s

Motion Planner

Rospy

URDF/SDF

Drivers

Ubuntu 16.04

Simmulated 
Cobot/sSimulated 

Cobot/s

Robot
R

O
S

RobotRobot

Fig. 1. General schema of the multirobot system with cobots

interaction between a user and the cobot, the Leap Motion1. There are several
reasons for this choice, but mainly because of its low cost, robustness, accurate
hand detection and positioning, and gesture interaction. Finally, the URDF file
is part of the configuration and not part of the architecture. The role it plays in
the system is critical, namely modeling the robot or robots we will control and
test.

2.2 ROS-based multi-robot solutions

The proposed solutions are a combination of the URDF file describing the cobots
and Motion Planner, as shown in Fig. 1. In this case, we use the MoveIt! pack-
age. However, it has a major drawback, since it is not designed for simultaneous
control of multiple cobots. Solutions must allow simultaneous control of multiple
cobots, with or without human intervention. This premise leads to the following
five solutions (see Tab. 1). The table is split into three columns: Proposed So-
lution, Motion Planner, and URDF File. The Proposed Solution column shows
the combinations we considered during the analysis, and we named them for
clarity, e.g., MoveIt-N×1 means (Motion Planner)-(Num. Replications)×(Num.
Cobots modeled). The Motion Planner column is divided into two columns. The
first one is labeled From and shows the name of the Motion Planner used. The
second column is called Number of Replications and shows the number of repli-
cations of the Motion Planner used, ranging from 1 to N replications. Finally,

1The Leap Motion Controller is an optical hand tracking module that cap-
tures the movements of your hands. Website: https://www.ultraleap.com/product/
leap-motion-controller/



ROS-based multirobot system 5

the URDF File column indicates the number of modeled robots described in it,
ranging from 1 to M.

Table 1. Possible combinations between the motion planner MoveIt! and the robot
modeling by the URDF file.

Motion Planner URDF File

Proposed Solution From Num. Replications Num. Cobots modeled

Default MoveIt! 1 1
MoveIt-N×1 MoveIt! N 1
MoveIt-1×M MoveIt! 1 M
MoveIt-N×M MoveIt! N M
Custom-N×M Custom N M

The first four options in Tab. 1 are the solutions we can get by combining
the motion planner and the robot described by the URDF file, and the last one
(Custom-N×M ) is an alternative to the MoveIt-N×M solution. We can discard
the Default solution since it is not a multi-robot system. We have chosen the
solutions MoveIt-N×1 and Custom-N×M, and will also explain in detail why we
have not chosen the proposed solutions MoveIt-1×M and MoveIt-N×M.

This MoveIt-N×1 solution from Tab. 1 is an extension of the Default solution
based on replication of all nodes in the ROS package MoveIt!. Moreover, each
replication is separated by a namespace that allows adding up to N cobots, as
shown in Fig. 2a, which reduces the complexity of scaling the system. Each
replication can use a different URDF File, i.e. you can also control cobots of
different brands (UR, Kuka, etc.) and with different types of controllers (position,
speed, etc.). The disadvantage of replication is the loss of free resources, since
all services are active without doing productive work. On the other hand, this
means that each robot is ready to use the full capabilities of MoveIt!. In addition,
the MoveIt Setup Assistant feature allows a very fast setup.

Before we get to the Custom-N×M solution, we need to go through MoveIt-
1×M and MoveIt-N×M (Fig. 2) to explain why these potential solutions were
discarded. Let us start with the MoveIt-1×M, shown in Fig. 2b. There is a major
difference here from MoveIt-N×1 in Fig. 2a. Although MoveIt-1×M appears to
be a definitive solution, it currently lacks adequate performance. This is due to
the limitations of the architecture of MoveIt!, which prevents it from meeting
the requirement of computing simultaneous motions. It is not easy to detect this
limitation, but it is due to the fact that it can only compute the inverse kine-
matics of one of the cobots at a time, which means that it would get the inverse
kinematics of each cobot in turns. This bottleneck becomes more apparent as
the number of cobots in the system increases. At a certain point, it can be seen
that the cobots pause until all computations for each of them are completed be-
fore executing the movement. If one of the cobots encounters a singularity while
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Fig. 2. Proposed solutions (MoveIt-N×1, MoveIt-1×M and MoveIt-N×M )

calculating its inverse kinematics, the entire system would stop. It is also limited
to only one type of controller. To add more cobots to the system, a subgroup
(Group Cobot N controller) must be added to control one of the cobots, which
also imposes the constraint that it must be the same controller type as the main
group (Controller). In this solution, the complexity of controlling the cobots
increases with the number of cobots in the system. This is because MoveIt! con-
trols the cobots by setting the pose of each cobot in advance rather than at
runtime, which means that the target of the pose cannot be changed sponta-
neously. Because of this property, it is not possible to control the movements of
multiple cobots interactively via an external device controlled by a human. This
MoveIt-1×M proposal has already been implemented by TEAM O2AC [12].

For the above reasons, we discard the solution MoveIt-1×M as an option
and discuss the next solution MoveIt-N×M shown in Fig. 2c. This one is similar
to MoveIt-N×1 (Fig. 2a), where the system is scaled by replicating MoveIt!
via namespaces, while cobots are added via the URDF file, which is the main
feature of MoveIt-1×M (Fig. 2b). When only one cobot is defined in the URDF
file, we get the solution MoveIt-N×1, but the moment multiple cobots are added
in the URDF file, this solution inherits the drawbacks of the solution MoveIt-
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1×M (Fig. 2b), which is suitable for automating repetitive tasks but not for
interacting with the user.

At this point, the solutions MoveIt-1×M and MoveIt-N×M shown in Fig. 2
are possible solutions, but they do not meet the requirements needed by our
system. As a consequence, the Custom-N×M solution is proposed, which imple-
ments a custom planner from scratch based on the functionality of MoveIt!. In
this solution, the mentioned problems for the proposed solutions MoveIt-1×M
and MoveIt-N×M do not occur. As can be seen in Fig. 3, each cobot has its own
motion planner and controller. This solves the problem that the inverse kine-
matics can only be computed for one cobot at a time, it also solves being able to
only use one type of controller, and the problem of interacting with users that
occurred with MoveIt-1×M and MoveIt-N×M. These problems are eliminated
by adding custom motion planners and a separate controller type for each cobot
that can operate under the same namespace. At the same time, the ability to
add more cobots to the system via the URDF File is preserved. In addition,
this solution consumes fewer resources than MoveIt-N×1, as no services are left
unused when scaling.

2.3 Integration of human machine interface with Leap Motion

Fig. 4 shows the integration of Leap Motion into the system for simultaneously
control of up to two robots, for the solutions in Fig. 1. Basically, the ROS node,
which controls the movements of the cobot, only needs to subscribe to the topic
leapmotion/data1 or leapmotion/data2 and use this data input accordingly to
control the cobot’s movements. Notice that we have two topics. The reason is
that Leap Motion can recognize up to two hands, so the right hand (right.msg)
and the left hand (left.msg) data are separated into different topics.

Fig. 4 shows the design of the integration with nodes and topics, showing
a representation of the general behavior and its components. Here, the Leap
Motion library is used to identify the gestures and obtain the data needed to
control the gripper, the cobot’s movements, and the end-effector’s orientations.



8 Miguel Burgh-Oliván et al.

sender

leapmotion/data1right.msg

leap_interface.py

frames

Object

UR10_lm_arm_1

leapmotion/data2left.msg UR10_lm_arm_2

(a) Stop (b) Pincer (c) Rock (d) Thumbs up

Fig. 4. Leap Motion’s integration scheme

The Leap Motion library allows waiting for events (frames from Leap Motion)
and retrieves the required data at each event and stores it in an object, which is
then accessed by the sender node using the API provided by Leap Motion. The
sender node receives the information, stores it in a message and publishes it using
the topic leapmotion/data1 for the right hand data. The ROS node is subscribed
to this topic and sends the commands to the cobot with the information received
from the topic leapmotion/data1. Finally, the ROS node executes the motion.
Four types of gestures have been implemented using the API provided by Leap
Motion (see Fig. 4). The fist gesture indicates to stop sending instructions, the
pincer gesture is applied to control the cobot’s gripper, the thumbs up gesture
indicates that it is ready, and the rock gesture indicates that it takes the current
position of the hand as a reference frame.

3 Experimental validation

3.1 Results with Gazebo

Several tests were performed in the Gazebo simulator, where each of the cobots
picked up three cubes placed on a table and placed them in a basket. The same
test was executed for the two proposed solutionsMoveIt-N×1 and Custom-N×M.
The first test (Fig. 5) is a simulation with two cobots, showing how both cobots
simultaneously pick up each of the cubes with the gripper and place them in a
basket. As an example of scaling the solution for N cobots, the same test was run
with four cobots in the system. The setup environment is a case of use where
objects and cobots are mapped in the world to get a better overview of the
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simultaneous movements of each cobot; alternatively, it would also be possible
to create a simple test where, e.g., robots building a tower together.

(a) Pick & place by two cobots (b) Pick & place by four cobots

Fig. 5. Results of the pick & place on Gazebo with MoveIt-N×1 & Custom-N×M
solutions (see the testing in the video3).

Finally, Fig. 6 shows the tests performed with the Leap Motion device lying
on the table with the hands directly above the device which is connected to the
computer. This allows the exchange of data provided by a user’s hands move-
ments which are represented on Gazebo by the cobots. This test shows that
both solutions (MoveIt-N×1 and Custom-N×M ) can control the cobots cor-
rectly. They reproduce the movements performed by the user with both hands,
and the interaction is quite smooth, as there is hardly any delay between the
movement of the hand and the execution of the movement in Gazebo.

(a) Side movements (b) Up-and-down movements

Fig. 6. Results of performing hand movements obtained from Leap Motion on Gazebo
with MoveIt-N×1 and Custom-N×M solutions (see the full movements in the video3).

In terms of robustness, note that in the hand-tracking recognition test, it
may happen that the system misinterprets the detected gesture with a similar
one. In addition, it is important to set the frame rate appropriately; otherwise
the gestures may not be recognized within a reasonable time frame. Further-
more, there is a clear difference between MoveIt-N×1 and Custom-N×M, but
both simulations perform the movements successfully. In the video3 with the
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simulation results, it can be seen that Custom-N×M follows the movements of
the hand better.

3.2 Results with the UR10 cobot

The tests are performed with the physical UR10 cobot shown in Fig. 7. The
solution tested with the cobot is the Custom-N×M modified to control a sin-
gle robot. Before running the tests, the simulations were evaluated in Gazebo
to verify that everything was working correctly. During these tests, the maxi-
mum speed at which the robot moves was limited for safety reasons. The results
obtained in Fig. 7 shows the user instructing the robot, via the Leap Motion
device, to pick up and put down different objects: a sole (first row), a plastic
bottle (second row), and a teddy bear (third row).

Fig. 7. Results of picking up and placing objects with Leap Motion on a robotic plat-
form. Picking up and placing a sole (first row), a plastic bottle (second row), and a
teddy bear (third row). Watch the tests in the video3.

3Video link: https://github.com/Serru/MultiCobot-UR10-Gripper
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4 Conclusion

This article addresses the problem of developing a multi-robot system in the
ROS Kinetic environment, enabling the manipulation of objects with several
cobots. For this purpose, several possible solutions were analyzed that allow the
manipulation of objects and the manual control of up to two cobots through
the Leap Motion device by recognizing gestures and movements of the hands.
It was found difficult to properly configure the ROS package MoveIt! since it
is not documented and is not able to natively support multiple cobots. Our
proposed solutions (MoveIt-N×1 and Custom-N×M ) can scale up to N cobots
that can be controlled simultaneously. In addition, the system allows independent
manual control of up to two cobots by one person via the Leap Motion device.
The operation of the system was validated with tests in Gazebo for one, two
and four cobots in both solutions and, finally, in a real environment, in this
case with a mobile manipulator to which a UR10 robot is attached. Based on
the results obtained, improvements can be made to the system, such as adding
artificial intelligence to predict future positions of the cobot. Also of interest
is the addition of sensors to detect and avoid collisions with other cobots or
humans, which would increase the safety of the system. Note that ROS 2 is
currently growing and offering new features for multi-robot systems after its
official launch in 2017. Nevertheless, due to its current predominance, ROS is
still necessary for the correct work of many applications, and the contributions
proposed in the field of multi-robot systems will continue to be of interest and
use, even if new alternatives such as ROS 2 appear.
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